Asymptotic counting in dynamical systems

Alan Yan ${ }^{1}$
Mentor: Sergiy Merenkov ${ }^{2}$
${ }^{1}$ West-Windsor Plainsboro High School North
${ }^{2}$ CCNY-CUNY

April 19-20, 2018
MIT PRIMES Conference

Introduction

Question

Given a counting function which quantifies some measurable property of a geometric object, what are the asymptotics of such a function?

- Expectation: $\sim c x^{d}, d$ is "dimension"
- Two Main Examples
- Fatou Components of Rational Maps
- Limit Sets of Schottky Groups

Dimension

Definition (Box-Counting Dimension)

Suppose that $N(\varepsilon)$ is the number of boxes of side length ε required to cover a set S. Then the dimension of S is defined as

$$
\lim _{\varepsilon \rightarrow 0} \frac{\log N(\varepsilon)}{\log (1 / \varepsilon)}
$$

- unique d such that $N(1 / x) \sim c x^{d}$ as $x \rightarrow \infty$.
- motivation for power law

Dimension Example: East Coast of Britain

Figure: East Coast of Britain, $d \approx 1.21$

Dimension Example: Cantor Set

Figure: Cantor Set, $d=\log _{3} 2$

Julia Set and Fatou Components

Definition

The filled-in Julia set of a complex function f is defined as

$$
K(f)=\left\{z \in \mathbb{C}: f^{k}(z) \nrightarrow \infty\right\} .
$$

Definition

The Julia Set of f is defined as the boundary of the filled-in Julia set, i.e.

$$
J(F)=\partial K(F)
$$

Definition

A Fatou component of f is a connected component of $K(f)$.

Examples: Julia set of $f(z)=z^{2}+c$

Figure: $c=-0.74543+0.11301 i$

Examples: Julia set of $f(z)=z^{2}+c$

Figure: The Basilica $(c=-1)$

Main Theorem on Fatou Components

Definition

Given a set $X \subset \mathbb{C}$, define the diameter of X as

$$
\operatorname{diam}(X)=\sup \{|x-y|: x, y \in X\}
$$

The Counting Function

For every function $f: \mathbb{C} \rightarrow \mathbb{C}$, we associate a counting function $N_{f}: \mathbb{R}_{>0} \rightarrow \mathbb{R}_{\geq 0}$ where $N_{f}(x)$ is the number of Fatou components of f whose diameter is at least $1 / x$.

Main Result on Fatou Components Cont.

Conjecture

Suppose $f(z)=z^{2}+c$ has an infinite number of Fatou components. Then,

$$
N_{f}(x) \sim c_{f} x^{d}
$$

where d is the dimension of $J(f)$ and $c_{f}>0$ is a constant.

- Numerically verified the theorem for $f(z)=z^{2}-1$.
- Proved in paper by M. Pollicott, M. Urbanski

Algorithm: Diameters of the Basilica

Escaping Criterion

Let $f(z)=z^{2}+c$ be a complex quadratic function. Let $R=\frac{1+\sqrt{1+4|c|}}{2}$. If for some $n>0$ we have $\left|f^{n}\left(z_{0}\right)\right|>R$, then $z_{0} \notin K(f)$.
(1) Construction
(2) Distinguish Components
(3) Computation of Diameter
(9) Problem with (2): Bridges
(6) \sqrt{A} Counting Function

Figure: Bridge

Hyperbolic Geometry: The Poincare Disk Model

Definition

The Poincare disk is the unit disk \mathbb{D} equipped with new notions of lines, distance, and angles.

- Geodesics are orthogonal circles!
- To calculate distance, we can use the formula

$$
d(A, B)=\ln \frac{|A Q| \cdot|B P|}{|A P| \cdot|B Q|}
$$

Figure: Geodesics

Angles in \mathbb{D}

Figure: Angle between Geodesics

Isometries and Schottky Groups

Definition

An isometry is a map that preserves distances.

- Isometry Groups

$$
G=\left\{h(z)=\frac{\alpha z+\beta}{\bar{\beta} z+\bar{\alpha}}:|\alpha|^{2}-|\beta|^{2}=1, \alpha, \beta \in \mathbb{D}\right\}
$$

Isometries and Schottky Groups (Contd)

Definition

If g is an isometry which does fix z_{0}, then $D_{z_{0}}(g)=D(g)$ represents the closed half-plane in \mathbb{D} bounded by the perpendicular bisector of the hyperbolic segment $\left[z_{0}, g\left(z_{0}\right)\right.$] containing $g\left(z_{0}\right)$.

Definition

A Schottky group of rank 2 is a subgroup of G generated by two isometries g_{1}, g_{2} that satisfies

$$
\overline{\left(D\left(g_{1}\right) \cup D\left(g_{1}^{-1}\right)\right)} \cap \overline{\left(D\left(g_{2}\right) \cup D\left(g_{2}^{-1}\right)\right.}=\emptyset
$$

Example: Schottky Groups

Figure: Induced Half Planes of the Generators

The Limit Set of a Schottky Group

Definition

The limit set of $L(\Gamma)$ of a isometry group Γ is defined by

$$
L(\Gamma)=\overline{\Gamma z} \cap \partial \mathbb{D}
$$

Figure: $L\left(S\left(g_{1}, g_{2}\right)\right)$

Conjecture on the Limit Sets $S\left(g_{1}, g_{2}\right)$

Definition (Counting Function)

For a Schottky group $S\left(g_{1}, g_{2}\right)$, define $N(x, p): \mathbb{R}_{>0} \times \mathbb{D} \rightarrow \mathbb{R}_{\geq 0}$ to be the number of intervals $I \in \partial \mathbb{D} \backslash L\left(S\left(g_{1}, g_{2}\right)\right)$ such that the angle between the geodesics from the endpoints of I to p is at least $1 / x$.

Conjecture

For every point $p \in \mathbb{D}$ and nontrivial Schottky group $S\left(g_{1}, g_{2}\right)$,

$$
N(x, p) \sim c x^{d}
$$

where d is the dimension of $L\left(S\left(g_{1}, g_{2}\right)\right)$. The constant c depends on the point p.

Future Research

- Fatou Components
- Generalize the theorem for different types of rational maps
- Prove a similar theorem replacing diameters by \sqrt{A}.
- Limits Sets of Schottky Groups
- Efficient Algorithm for limit sets of Schottky groups
- verify and prove the conjecture on Schottky groups
- Relationship between c and p
- Discover new counting functions which are asymptotic to $c x^{d}$.

Acknowledgements

- MIT-PRIMES Program
- Prof. Sergiy Merenkov
- Dr. Tanya Khovanova
- My parents

References

(1) Dal'bo-Milonet, F. (2011). Geodesic and horocyclic trajectories. London: Springer.
(2) M. Pollicott, M. Urbanski, Asymptotic Counting in Conformal Dynamical Systems (2017)
(3) A. Kontorovich, H. Oh, Apollonian Circle Packings and Closed Horospheres on Hyperbolic 3-Manifolds
(9) Carleson, L., Gamelin, T. (1993). Complex dynamics. New York: Springer-Verlag.
(3) Falconer, K. (2003). Fractal geometry : mathematical foundations and applications. Chichester: Wiley.

Image Sources

(1) Alexis Monnerot-Dumaine / CC-BY-SA-3.0 (1)
(2) Adam Majewski / CC-BY-SA-3.0 (3)
(3) Dal'bo-Milonet, F. (2011). Geodesic and horocyclic trajectories.

London: Springer. $(8,9)$

